Basic 3D Solid Recognition in RGB-D Images

نویسندگان

  • Tomasz Kornuta
  • Maciej Stefanczyk
  • Wlodzimierz Kasprzak
چکیده

The paper deals with the problem of recognition of 3D objects for the purpose of their subsequent grasping and manipulation by a two-handed robot. We describe the idea of a general framework for object recognition rooted in the compositional model of the world. This approach threats complex objects as entities constructed of simpler, elementary ones, termed solids. In particular, we focus on recognition of two types of such solids: cuboids and generalized cones. We present details of their operation, starting from the low-level processing of RGB-D images and ending with the generation of hypotheses regarding the presence and parameters of those types of solids.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

مدل‌سازی صفحه‌ای محیط‌های داخلی با استفاده از تصاویر RGB-D

In robotic applications and especially 3D map generation of indoor environments, analyzing RGB-D images have become a key problem. The mapping problem is one of the most important problems in creating autonomous mobile robots. Autonomous mobile robots are used in mine excavation, rescue missions in collapsed buildings and even planets’ exploration. Furthermore, indoor mapping is beneficial in f...

متن کامل

RGB-D Object Recognition Using Deep Convolutional Neural Networks

We address the problem of object recognition from RGB-D images using deep convolutional neural networks (CNNs). We advocate the use of 3D CNNs to fully exploit the 3D spatial information in depth images as well as the use of pretrained 2D CNNs to learn features from RGB-D images. There exists currently no large scale dataset available comprising depth information as compared to those for RGB da...

متن کامل

Organ Segmentation in Poultry Viscera Using RGB-D

We present a pattern recognition framework for semantic segmentation of visual structures, that is, multi-class labelling at pixel level, and apply it to the task of segmenting organs in the eviscerated viscera from slaughtered poultry in RGB-D images. This is a step towards replacing the current strenuous manual inspection at poultry processing plants. Features are extracted from feature maps ...

متن کامل

Frustum PointNets for 3D Object Detection from RGB-D Data

While object recognition on 2D images is getting more and more mature, 3D understanding is eagerly in demand yet largely underexplored. In this paper, we study the 3D object detection problem from RGB-D data captured by depth sensors in both indoor and outdoor environments. Different from previous deep learning methods that work on 2D RGB-D images or 3D voxels, which often obscure natural 3D pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014